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Introduction!

In this document you will find examples, explanations, and some tricks to help you succeed
in this course. Everything you will find here has been asked or discussed in some form in my
office hours in past semesters, so I thought it would be best to simplify my life (and yours)
by compiling a working document of TA notes. There is a section for every lecture in the
semester, as well as an Appendix with a quick guide to frequently used and confused math
symbols and notation. These notes are by no means complete or comprehensive, and are not
a substitute for attending lectures or coming to office hours. If something here confuses you
or seems suspicious, please email me (cweiers@stevens.edu) and we can work it out. Also,
if you have any suggestions, please let me know! I made this resource for you!
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1 Lecture 1: Divisibility. GCD. Congruences.

1.1 Proof by induction

First, we review a basic mathematical proof technique, proof by induction. The idea is simple: we
have a statement that we want to prove. We test a single case to confirm that the statement is
indeed true. Then we assume that the statement is true up to a certain point. Finally, we show
that the statement is also true one single step beyond the assumed point, using the assumption
previously made. Proofs by induction thus have 3 steps:

1. The base case: Show that the given statement is true for some “basic” case. This is often
n = 0 or n = 1, depending on the context. The value of n should be chosen so that the base
case statement is not trivial.

2. The induction hypothesis: Assume that the given statement is true for all n ≤ N for
some fixed value of N .

3. The inductive step: Now use the induction hypothesis to show that the given statement is
also true for n = N + 1.

It’s probably easiest to understand how proof by induction works with a simple example. The
following is the first proof by induction I ever learned how to do.

Example 1.
Question: Using induction, prove the following equality:

n∑
i=1

i =
n(n+ 1)

2
.

Solution:

1. First, let’s test our base case, n = 1:

1∑
i=1

i = 1 =
1(1 + 1)

2
.

So the given statement holds for our base case.

2. Now assume that the given statement is true up to some n = N . In other words, we
are assuming that

N∑
i=1

i =
N(N + 1)

2

for some N . This is our induction hypothesis.

3. Now we show that the given statement holds for n = N + 1. We can do this using
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some algebra and our induction hypothesis:

N+1∑
i=1

i =

N∑
i=1

i+

N+1∑
i=N+1

i (splitting the sum)

=
N∑
i=1

i+ (N + 1) (simplifying second sum)

=
N(N + 1)

2
+ (N + 1) (by induction hypothesis)

=
N(N + 1)

2
+

2(N + 1)

2

=
(N + 1)(N + 2)

2
. (factoring by grouping)

Now we can see that the given statement is satisfied for n = N + 1, and we are done!

1.2 Congruence

This is an extremely important topic! It will be used in pretty much everything in this course, so
it’s best to understand it now or you will suffer later.

Let’s first recall the definition from the slides:

Definition 1.1. a is congruent to b modulo n if a and b give the same remainder when
divided by n.

We use the notation a ≡ b mod n or, more frequently, a ≡n ba ≡n b. Both are read “a is congruent to b
mod n”.

It may be useful to think about congruences in terms of a clock face with n tick marks. Consider an
analog clock with 12 ticks. We don’t say, “it’s 25 o’clock”, we say “it’s 1 o’clock”. That is because
25 ≡12 1. In other words, 25/12 has remainder 1.

Example 2.
Question: What is 13 mod 8?

Solution: First, notice that 13/8 has remainder 5. Thus 13 ≡8 5.13 ≡8 5. Using a clock face
with 8 ticks, we can also see that this is true by starting at 0 and counting clockwise 13
ticks:
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0

4

17

35

26

1.2.1 Calculator trick for congruences

There is an easy way to compute congruences on your calculator. It is easiest to understand through
example:

Example 3.
Question: Compute 5678 % 18.

Solution: On your calculator, do the following: type 5678-18, hit ENTER. You will
get 315.444444444. Now subtract off the whole number, 315, from the result. You will get
just the decimal part, .444444444444. Now multiply that by the modulus, 18. You will get
8. That is the remainder. Your calculator screen will look something like this:

5678/18

315.444444444

ANS-315

.444444444444

ANS*18

8

You can use this to check your work or on exams. For the first few homework assignments, you
are expected to show your work when calculating congruences. Another great way to check your
work is using WolframAlpha (https://www.wolframalpha.com/). You can type the following into
WolframAlpha:

5678 mod 18

Easy as that.

5
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2 Lecture 2: Units. Euler function. CRT. RSA.

2.1 Chinese Remainder Theorem

The idea here is that we can solve systems of numerous congruences with different moduli assuming
that all of the moduli are pairwise coprime. The proof of the CRT provides a kind of algorithm
for solving such congruences. It is not too complicated, but it is easy to mess up the details, so be
careful with your computations.

Example 4.
Question: Solve the following system of congruences:

x ≡4 2

x ≡5 2

x ≡7 3.

Solution: First, let’s collect the information we already have (notice that n = 4 · 5 · 7 = 140):

c1 = 2 n1 = 4 m1 =
140
4 = 35 d1 =?

c2 = 2 n2 = 5 m2 =
140
5 = 28 d2 =?

c3 = 3 n3 = 7 m3 =
140
7 = 20 d3 =?

Next, we need to solve for d1, d2, and d3. To do so, we can simply solve the three congruences
35x ≡4 1, 28x ≡5 1, and 20x ≡7 1 one-by-one. First, we solve for d1:

35x ≡4 1

3x ≡4 1 (taking both sides mod 4)

⇒ x ≡4 3 (since 3 · 3 = 9 ≡4 1).

Hence d1 = 3. Now we solve for d2:

28x ≡5 1

3x ≡5 1 (taking both sides mod 5)

⇒ x ≡5 2 (since 3 · 2 = 6 ≡5 1).

Hence d2 = 2. Now we solve for d3:

20x ≡7 1

6x ≡7 1 (taking both sides mod 7)

⇒ x ≡7 6 (since 6 · 6 = 26 ≡7 1).

Hence d3 = 6. Let’s restate the information that we now have:

c1 = 2 n1 = 4 m1 =
140
4 = 35 d1 = 3

c2 = 2 n2 = 5 m2 =
140
5 = 28 d2 = 2

c3 = 3 n3 = 7 m3 =
140
7 = 20 d3 = 6

6
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Finally, we just need to take a linear combination of ci’s, mi’s, and di’s to solve for x0:

x0 = c1m1d1 + c2m2d2 + c3m3d3

= (2)(35)(3) + (2)(28)(2) + (3)(20)(6)

= 210 + 112 + 360

= 682

≡140 122.

As a sanity check, we can confirm that our solution, x = 122, satisfies all three original
congruences, i.e.

122 ≡4 2

122 ≡5 2

122 ≡7 3.

Indeed, it does, so x = 122x = 122 is our solution.

2.2 Binary exponentiation

Binary exponentiation is a very useful tool for breaking down and simplifying congruences of large
powers. We can see how it works through an example.

Example 5.
Question: Compute 5101 % 11.

Solution: First, break down 101 into a sum of powers of 2, like this:

101 = 64
26

+32
25

+ 4
22

+ 1
20

.

Now we can rewrite 5101 as
5101 = 564+32+4+1,

and we can solve this efficiently using the method of successive squaring. The idea behind
this method is that we compute a large power “step-by-step” using increasingly large powers
of the base. In practice, this means that at every step of the successive squaring process, the
output value is bounded by the modulus, which in this case is 11. Let’s see how it works:

51 ≡ 55 mod 11

52 = (51)2 = 552 = 25 ≡ 33 mod 11

54 = (52)2 = 332 = 9 ≡ 99 mod 11

58 = (54)2 = 992 = 81 ≡ 44 mod 11

516 = (58)2 = 442 = 16 ≡ 55 mod 11

532 = (516)2 = 552 = 25 ≡ 33 mod 11

564 = (532)2 = 332 = 9 ≡ 99 mod 11.
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Notice that at each step, our result is bounded by 11. That keeps the computations man-
ageable.
Now we recombine these powers using properties of exponents to compute 5101 % 11:

5101 = 564+32+4+1

= (564)(532)(54)(51)

= (99)(33)(99)(55)

≡11 5.

Thus we have 5101 % 11 = 5.5101 % 11 = 5.

8
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3 Lecture 3: Primality testing. Factorization problem.

3.1 Pollard’s p− 1 algorithm

Say we have a large composite number N that is the product of two prime factors p and q, i.e.
N = pq. The goal of Pollard’s p − 1 algorithm is to find one of these prime factors. Ideally, we
want p− 1 to have many small prime factors.1

Now let’s review the algorithm.

Input: Large composite number N
Output: Prime factor d or “FAILURE”
Data: A random number a such that gcd(a,N) = 1

1 for n = 2, 3, . . . do
2 compute d = gcd(N, an! − 1)
3 if 1 < d < N then
4 output d // a nontrivial factor has been found

5 end
6 else if d = N then
7 output “FAILURE” // no nontrivial factor has been found

8 end

9 end

Algorithm 1: Pollard’s p− 1 algorithm

Note 1. Like all factorization algorithms you will learn in this class, the nice thing about this
algorithm is that we can easily check our work. If the algorithm spits out some number d, just to
be sure, check whether d | N . In other words, take your calculator and type in N/d. If the result
is a whole number, great. You have found both factors of N ! If not, something went wrong. You
should either have a prime factor or nothing. Go back through the algorithm and see where you
went wrong.

Example 6.
Question: Using Pollard’s p − 1 algorithm and a = 2 (starting with n = 5), find both
nontrivial prime factors of 115147.

Solution: Here we have N = 115147 and a = 2. Since 115147 is odd, we have
gcd(2, 115147) = 1, so we are good. Now we start iterating through the algorithm.

1. Let n = 2. Now we compute, starting with n = 5:

d = gcd(115147, 25! − 1)

= gcd(115147, 2120 − 1)

= 1.

So d = 1, which satisfies neither 1 < d < N nor d = N , so we proceed...

1There is a nice, short explanation of the algorithm (with example) in [4].
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2. Now we have n = 6:

d = gcd(115147, 26! − 1)

= gcd(115147, 2720 − 1)

= 1.

No good. Onward:

3. n = 7:

d = gcd(115147, 27! − 1)

= gcd(115147, 25040 − 1)

= 113,

which clearly satisfies 1 < 113 < 115147. To double check, we divide 115147 by our
found factor 113, and we get

115147/113 = 1019.

So now the algorithm terminates, and we have found both nontrivial prime factors of 115147,
which are 113 and 1019.113 and 1019.

3.2 Quadratic sieve algorithm (factorization by difference of squares)

Say we have a large composite number N that is the product of two prime numbers p and q (a
familiar story). We want to factor N . The quadratic sieve algorithm works to find some numbers
a and b such that a ̸≡N ±b and a2 ≡N b2. The second condition is essential, since it gives us this:

a2 ≡N b2

⇒ a2 − b2 ≡N 0 (subtracting b2 from both sides)

⇒ (a+ b)(a− b) ≡N 0 (factoring LHS)

⇒ gcd(a+ b,N) or gcd(a− b,N) may be either p or q.

So this algorithm basically uses this clever little trick to help us (sometimes) more efficiently factor
N . The algorithm itself is rather complicated, so just focus on how to apply it in this class.

Here’s how it’s going to work: you are going to be given a large composite number N and a set
of relations. A relation in this context is a congruence with a square of one larger number on
one side and the prime factorization of that larger number on the other side (it will make sense
when you look at an example). You will be given these relations–you don’t need to worry
about generating them yourself. Once you have these relations, you multiply them together
in a particular way to try to find nontrivial factors of N . It’s actually not so difficult in practice.

10
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Example 7.
Question: Let N = 299. Use the quadratic sieve algorithm and the following relations:

302 ≡N 3

402 ≡N 3 · 5 · 7
552 ≡N 5 · 7
1252 ≡N 7 · 11

to find both nontrivial factors of N .

Solution: We are going to multiply together some subset of these relations until we
get something of the form a2 ≡N b2. So we want at least two occurrences of each prime
factor from the right-hand sides of the relations to be in our final relation. Let’s multiply
together the first three relations:(

302
)(
402

)(
552

)
≡N (33)(33 · 55 · 77)(5577)(

302 · 402 · 552
)
≡N (33 · 33 · 55 · 77 · 55 · 77)

(30 · 40 · 55)2 ≡N (33 · 33 · 55 · 55 · 77 · 77)
(30 · 40 · 55)2 ≡N

(
332 · 552 · 772

)
(30 · 40 · 55)2 ≡N (33 · 55 · 77)2.

Ok, so now we have something of the form a2 ≡N b2, where a = 30 · 40 · 55, and b = 3 · 5 · 7.
Let’s simplify this a few steps further:

(30 · 40 · 55)2 ≡N (3 · 5 · 7)2

(66000)2 ≡N (3 · 5 · 7)2 (multiplying out LHS)

(220)2 ≡N (3 · 5 · 7)2 (mod by N = 299 on LHS)

(220)2 ≡N (105)2 (multiplying out RHS)

So now we have a = 220, b = 105. Now we need to find gcd(220± 105, 299). First, let’s find
gcd(220 + 105, 299)a:

gcd(220 + 105, 299) = gcd(325, 299) = 13.

We can see that 13 is indeed a prime factor of 299, since 299/13 = 23. Hence the two prime
factors of 299 are 13 and 123.13 and 123.

aYou can either use WolframAlpha for this (on homework) or the Euclidean algorithm (on exams). In
WolframAlpha, just type gcd(325,299).

3.3 Pollard’s rho algorithm

The goal of Pollard’s rho algorithm is identical to that of Pollard’s p− 1 algorithm–we are given a
large composite number N that is the product of two primes p and q, and we want to recover one
of these prime factors (the second prime factor comes for free once we get the first).

11
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Here is the algorithm:

Input: Large composite number N , function f(x) = x2 + 1
Output: Prime factor d
Data: Seed value x0 = 2

1 for n = 1, 2, . . . , ⌈2 4
√
N⌉ do

2 compute xn = x2n−1 + 1 mod N
3 end
4 for i = 1, 2, . . . do
5 compute d = gcd(x2i − xi, N)
6 if d > 1 then
7 output d // a nontrivial factor has been found

8 end

9 end

Algorithm 2: Pollard’s ρ algorithm

Let’s see an example.

Example 8.
Question: Using Pollard’s rho algorithm, find both nontrivial factors of 1751.

Solution: Our large composite number N is 1751. Notice that ⌈2 4
√
1751⌉ = 13, so

we will need to first find x1, . . . , x13. Recall that we have x0 = 2, which we will use to
recursively calculate xi values.

x0 = 2 x1 = 22 + 1 ≡N 5 x2 = 52 + 1 ≡N 26
x3 = 262 + 1 ≡N 677 x4 = 6772 + 1 ≡N 1319 x5 = 13192 + 1 ≡N 1019
x6 = 10192 + 1 ≡N 19 x7 = 192 + 1 ≡N 362 x8 = 3622 + 1 ≡N 1471
x9 = 14711 + 1 ≡N 1357 x10 = 13572 + 1 ≡N 1149 x11 = 11492 + 1 ≡N 1699
x12 = 16992 + 1 ≡N 954 x13 = 9542 + 1 ≡N 1348

Now we calculate gcds. Per the algorithm, we only need to calculate gcds of differences of
the form x2i − xi. We start with i = 1 and work our way up.

gcd(x2 − x1, 1751) = gcd(26− 5, 1751) = 11

gcd(x4 − x2, 1751) = gcd(1319− 26, 1751) = 11

gcd(x6 − x3, 1751) = gcd(19− 1319, 1751) = gcd(451, 1751) = 11 (remember: mod1751)

gcd(x8 − x4, 1751) = gcd(1471− 1319, 1751) = 11

gcd(x10 − x5, 1751) = gcd(1149− 1019, 1751) = 11

gcd(x12 − x6, 1751) = gcd(954− 19, 1751) = 1717.

Finally, we have found a nontrivial factor of N , d = 17. Now the other factor comes for free,
since we can quickly see that

1751/17 = 103.

So we have found both nontrivial prime factors of 1751, which are 17 and 103.17 and 103.

12
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4 Lecture 4: Groups. Primitive elements.

There is a lot of material in this lecture that may be more abstract than you are used to seeing. A
big hangup for many students is the notation and the vocabulary, so it may be helpful for you to
review some symbols before you try to do the homework. The following is just a small subset of
Appendix A2.

SymbolSymbol MeaningMeaning

φφ usually indicates a mapping

→→ general mapping from domain to range

7→7→ specific mapping from elements in
domain to their images in range

×× Cartesian product

ZZ the set of all integers

NN the set of all natural numbers

QQ the set of all rational numbers

RR the set of all real numbers

CC the set of all complex numbers

ZnZn the set of integers modulo n

UnUn the set of units modulo n

So, if you see something like this:
φ : Z× Z→ Z,

it means φ is a mapping that takes elements from Z × Z and sends them to elements in Z (recall
that Z × Z is the set of pairs of elements (a, b) where a and b are both integers). It is a general
mapping.

Now to the main topic: groups! Groups are algebraic structures that, in a way, quantify symmetry.
In short, a group is some set of elements G equipped with some sort of operation, often denoted
by · or +. This operation relates the elements of G to each other in a particular way, and it must
satisfy certain properties. If the operation does not satisfy those properties, the structure is not a
group. Let’s review the more formal definition of a group from the slides.

Definition 4.1. Let G be a set and · be a binary operation on G. The pair (G, ·) is called
a group if:

(G1) There exists e ∈ G such that eg = ge = g for every g ∈ G. The element e is called the
identity element of G.

(G2) (a · b) · c = a · (b · c) for every a, b, c ∈ G.

(G3) For every a ∈ G, there exists an element b ∈ G such that ab = ba = e. This element b
is called the inverse of a and is denoted by a−1.

2You can find the full list (with examples) in Appendix A at the end of this document.
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(G1), (G2), and (G3) are the group axioms. The first group axiom (G1) refers to existence of
unique identity, (G2) refers to associativity, and (G3) refers to existence of inverses (the order of
the axioms is not important). To prove that a given structure is a group, you need to prove that
it satisfies these three axioms, and that it is closed under operation (i.e. for any a and b in the
group, a · b is also in the group). Many groups that we work with in this class are abelian groups,
which means that, for any two elements a and b in the group, ab = ba. This means that elements
commute.3

3What is purple and commutes? An abelian grape.
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5 Lecture 5: DLP. DH. ElGamal. Algorithms for DLP.

5.1 Discrete logarithms and the DLP

The focus of this lecture is the discrete logarithm problem and (some of) its applications in cryp-
tography. As such it is very important for you to understand exactly what the discrete logarithm
is and how to use it. Let’s look at the definition from the slides.

Definition 5.1. For a fixed modulus n ∈ N and some elements g, h ∈ Un, x ∈ Z is the
discrete logarithm of h to the base g modulo n if gx % n = h.

Discrete logarithms are, as you may have guessed, very similar to the standard real-valued loga-
rithms you may have learned in high school. In this class, we are only concerned with the discrete
log. Let’s look at a simple example before we get to some cryptosystems.

Example 9.
Question: What is log7(15) modulo 41?

Solution: Here we have n = 41 (our modulus), g = 7 (our base), and h = 15. We
need to find the value of x such that 7x ≡41 15. We can do this by enumerating powers of 7
mod 41:

70 ≡41 1

71 ≡41 7

72 = 49 ≡41 8

73 = 7 · 8 = 56 ≡41 15.

We can stop calculating powers of 7 now, since we have found that 73 ≡41 15. Thus
log7(15) mod 41 = 3.log7(15) mod 41 = 3.

We can check our work by entering the following into WolframAlpha:

MultiplicativeOrder[7,41,15]

You may have guessed by now that the discrete log problem (DLP) is the algorithmic problem of
finding the value of a discrete log like we just did. In practice, for large moduli, it is computationally
intractable (as far as we know) to calculate discrete logs. This is why the DLP can be used in
public-key cryptosystems such as those discussed in class.

Remark 1. Remember these two important discrete log rules:

logg(ab) = logg(a) + logg(b)

logg(a
z) = z logg(a).

These will help you!

15
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5.2 Pohlig-Hellman algorithm

The Pohlig-Hellman algorithm is one nice (better than brute force) way to compute discrete logs
in certain classes of finite abelian (commutative) groups. Let’s review the algorithm itself.

Input: Modulus n, two elements g, h ∈ Zn

Output: x = logg(h) mod n

1 compute |g| = N = pa11 · · · p
ak
k

2 for i = 1, . . . , k do

3 compute Ni =
N
p
ai
i

, gi = gNi , hi = hNi

4 compute xi = loggi(hi)

5 end
6 use CRT to solve the following obtained system for x:

x ≡p
a1
1

x1

...

x ≡p
ak
k

xk

Algorithm 3: Pohlig-Hellman algorithm

Now an example.

Example 10.
Question: Use the Pohlig-Hellman algorithm to find log6(11) modulo 41.

Solution: Here we have n = 41, g = 6, and h = 11. The first step is to compute
the order of 6 modulo 41. Using WolframAlpha (or direct enumeration, or some other
method of your choice), we know that |6| = 40 = N . Now we need to the find the prime
factorization of 40, which is 40 = 23 · 5. Thus pa11 = 23 and pa22 = 51. Since k = 2, we only
need to compute N1, N2, g1, g2, h1, and h2. First, let’s find N1, g1, and h1:

N1 =
40

23
=

40

8
= 5, g1 = 65 ≡41 27, h1 = 115 ≡41 3.

Now N2, g2, and h2:

N2 =
40

51
=

40

5
= 8, g1 = 68 ≡41= 10, h1 = 118 ≡41 16.

Next, we need to compute x1 and x2.

x1 = log27(3)

x2 = log10(16).

We can first find x1 by enumerating powers of 27:

270 ≡41 1

271 ≡41 27

272 = 27 · 27 = 729 ≡41 32

273 = 32 · 27 = 864 ≡41 3.
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We can stop here, since we have 273 ≡41 3, so x1 = log27(3) = 3x1 = log27(3) = 3. Now for x2:

100 ≡41 1

101 ≡41 10

102 = 10 · 10 = 100 ≡41 18

103 = 18 · 10 = 180 ≡41 16.

Once again we can stop, since we have 103 ≡41 16, so x2 = log10(16) = 3x2 = log10(16) = 3. Now all that’s left
to do is solve the following system of congruences:

x ≡23 3
x ≡51 3

−→ x ≡8 3
x ≡5 3

⇒ x = 3.

We can easily observe that x = 3 without even doing a single iota of work. We just use the
eyeball method: look at the congruences, see that the answer is already there.
So now we’re done! We can check our work by confirming that, indeed, 63 ≡41 11. Thus
log6(11) modulo 41 = 3.log6(11) modulo 41 = 3.

5.3 Index calculus method

The index calculus method, as the name would suggest, uses index calculus to somewhat efficiently
(better than brute force) compute discrete logs. You will be given a modulus, a base, and potentially
some additional constraints (such as a value of B for B-smoothness). With this given information,
you will either need to calculate or will be given some relations (a bunch of congruences) that
you will use to find some discrete logs. In the following example, the relations have already been
generated for you; you just need to use them to calculate the specified discrete logs.

Example 11.
Question: g = 11 is a primitive root of N = 47. Use the index calculus method to compute
log11(2), log11(3), and log11(5) using the following provided powers of 11 only:

112 ≡47 27

113 ≡47 15

1129 ≡47 10.

Solution: First, note that 47 is prime. We are told here that 11 is a primitive root of 47.
That means that 11 has multiplicative order 47− 1 = 46, i.e. 1146 ≡47 1.
Now, we are asked to calculate several discrete logs, all of base 11. We are given three
congruences, all of powers of 11. So the first step here is to take log11 of both sides of the
three congruences. This will give us

log11
(
112

)
≡46 log11(27)

log11
(
113

)
≡46 log11(15)

log11
(
1129

)
≡46 log11(10)

−→
2 ≡46 log11(27)
3 ≡46 log11(15)
29 ≡46 log11(10).
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Notice that the modulus is now |47| = 46!

We can simplify the RHS of these three congruences using the helpful properties of logs–to
do so, we will take the prime factorizations of 27, 15, and 10:

2 ≡46 log11(27)
3 ≡46 log11(15)
29 ≡46 log11(10)

−→
2 ≡46 log11

(
33
)

3 ≡46 log11(3 · 5)
29 ≡46 log11(2 · 5)

−→
2 ≡46 3 log11(3)
3 ≡46 log11(3) + log11(5)
29 ≡46 log11(2) + log11(5).

To make this less ugly, let’s denote log11(2) by l2, log11(3) by l3, and log11(5) by l5, which
give us

2 ≡46 3l3

3 ≡46 l3 + l5

29 ≡46 l2 + l5.

Now we need to solve for l2, l3, and l5. We can solve for l3 using the first congruence.
We need to multiply both sides by 3−1 modulo 46, which is 31a:

2 ≡46 3l3 ⇒ 2 · 31 ≡46 3 · 31l3 ⇒ 16 ≡46 l3.

So we have l3 = 16, which we can plug directly into the second congruence to solve for l5:

3 ≡46 l3 + l5
l3=16⇒ 3 ≡46 16 + l5 ⇒ 3− 16 = −13 ≡46 33 ≡46 l5.

Now we have l5 = 33, which we can plug into the third congruence to solve for l2:

29 ≡46 l2 + l5
l5=33⇒ 29 ≡46 l2 + 33 ⇒ 29− 33 = −4 ≡46 42 ≡46 l2.

Now putting it all together, we have log11(2) = 42, log11(3) = 16, and log11(5) = 33.

aWe could also divide by 3 on both sides here, since 3 is invertible mod 46. That process would look like

2 ≡46 3l3 ⇒ 2

3
≡46 l3 ⇒ 2 + 46

3
=

48

3
= 16 ≡46 l3.
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6 Lecture 6: Quadratic congruences.

6.1 Remote coin flipping protocol

This protocol was proposed in the 1980’s to be used in adversarial information exchange settings
in which one adversary needs to choose a number at random without revealing it to his/her
opponent. Both participating adversaries know at every step of the protocol whether the other
party is cheating, and they can prove it.4

Example 12.
Question: Alice sends the number n = 209 to Bob. Bob sends a = 152 % 209 = 16 to Alice.
What four numbers can Alice send back to Bob? Which of these numbers represent winning
calls for Alice?

Solution: First, we need to find the prime factorization of n = 209. By trial and er-
ror (just trying to divide out increasingly large prime numbers from 209), we see that
209 = 11·19. Now we are given Bob’s choice of random x, which is 15, and the pre-calculated
value of a = 152 % 209, which is a = 16. Now Alice needs to solve the quadratic congruence
x2 ≡209 16. Recall that there will either be 0 or 4 solutions to this quadratic congruence.
First, let’s check whether there are any obvious solutions. We can immediately see that
x = ±4 is a solution to the congruence, since

42 = (−4)2 = 16 ≡209 16.

So we basically get those two solutions for free! Now, since we know that there are either
0 or 4 solutions, and we have already found two, there must be another two waiting to be
found.
There are two ways to approach this. One is a trick and the other is a computation.
The trick (kind of a scam): We can simply notice that, in the problem statement, we

were told that Bob sends a = 152 % 209 = 16 to Alice. So we were already told (once again,
for free!) that

152 = (−15)2 ≡209 16,

so ±15 are the other two solutions.
The hard way: I prefer the hard way, since I tend to not be very observant. Thankfully,
the hard way is not even so hard here. First, we need to solve the following congruences one
at a time: {

x2 ≡11 16 ≡11 5

x2 ≡19 16.

First, let’s solve x2 ≡11 5. As always, there are many ways to solve this. We can use the
properties from the slides. We have a congruence of the form x2 ≡p a, where p = 11 is prime
and a = 5 is a unit mod 11. We have p ≡4 3, so

x = ±5(11+1)/4 = ±512/4 = ±53 = ±125 ≡11 ±4.

4“Alice and Bob want to flip a coin by telephone. (They have just divorced, live in different cities, want to decide
who gets the car.) Bob would like not to tell Alice HEADS and hear Alice (at the other end of the line) say ‘Here
goes... I’m flipping the coin.... You lost!’ ” [1]
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As a sanity check, we can make sure that 42 ≡11 5, which it does.
Now we solve x2 ≡19 16. As above, we can immediately notice that x = ±4 satisfy this
congruence, since

42 = (−4)2 = 16 ≡19 16.

Now what remains is to solve the following four systems of congruences:

x ≡11 4
x ≡19 4︸ ︷︷ ︸

x=4

x ≡11 −4
x ≡19 4︸ ︷︷ ︸

x=−15

x ≡11 4
x ≡19 −4︸ ︷︷ ︸

x=15

x ≡11 −4
x ≡19 −4︸ ︷︷ ︸

x=−4

So the four numbers that Alice can send to Bob are ±4 and ±15.±4 and ±15.
Now! We need to determine which of these numbers are winning calls for Alice. The original
number that Bob chose was 15. So ±15±15 are winning calls for Alice.

6.2 Goldwasser-Micali cryptosystem

Unlike most of the cryptosystems previously discussed in this class, the security of Goldwasser-
Micali cryptosystem depends on the intractability of solving the quadratic reduosity problem for
a modulus of the form N = pq, where p and q are large primes. In other words, given a modulus
N = pq and an integer x, it is believed to be hard to determine whether x = y2 mod N for some y.

Encryption is fairly straightforward, so let’s jump right to a decryption example.

Example 13.
Question: Alice’s public key is N = 187 and a = 7. Bob encrypts three bits and sends Alice
the ciphertext blocks

185185 , 1515 , and 6161 .

Decrypt Bob’s message.

Solution: First, we need to compute the prime factorization of N = 187. By trial
and error (brute force search), we can quickly determine that N = 11 · 17. Now we need to
compute

(
185
11

)
,
(
15
11

)
, and

(
61
11

)
(we could also compute

(
185
17

)
,
(
15
17

)
, and

(
61
17

)
, since we get

the same decryption either way).

(
185

11

)
185≡119=

(
9

11

)
=

(
32

11

)
= 11

(
15

11

)
15≡114=

(
4

11

)
=

(
22

11

)
= 11

(
61

11

)
61≡116=

(
6

11

)
=

(
3

11

)(
2

11

)
11≡83=

(
3

11

)
(−1) 3≡43= −

(
11

3

)
(−1) 11≡32=

(
2

3

)
3≡83= -1-1 .

Thus the message is 001.001.
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You can check your calculations of the Legendre symbols by entering the following into WolframAl-
pha:

LegendreSymbol[185, 11]
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7 Lecture 7: Abelian groups.

7.1 Smith normal form

This is one of things that students most commonly mess up in this class. There are some strict rules
about the matrix operations that you can and cannot do when you are dealing with an integer-
valued matrix. You are allowed to perform elementary row and column operations to get a matrix
into Smith normal form (SNF). In this class, we will be dealing with integer-valued matrices.
That means that you will be given a matrix whose entries are all integers, possibly from some
set Zn. In the past (linear algebra, differential equations), you probably learned how to perform
operations on real-valued matrices, so there were different rules then.

!SNF mistake!

This is probably the most commonly made mistake in this class: Division is ILLEGAL! Don’t
do it! Matrix entries need to be integers! Even if you can divide and get an integer, DON’T
DO IT! It’s a trap!

Example 14.
Question: Put the following matrix with entries in ZZ into SNF (denote rows by x1, x2, x3, x4
and columns by y1, y2, y3): 

1 4 7
−1 6 1
0 5 1
2 3 0

 .

Solution: We will apply elementary row and column operations to get the given matrix into
SNF. We certainly won’t be doing any division, since that would cause big problems.

1 4 7
−1 6 1
0 5 1
2 3 0

 y2←y1+y2→


1 4 7
0 10 8
0 5 1
2 3 0

 y4←y4−2y1→


1 4 7
0 10 8
0 5 1
0 −5 −14



y4←y3+y4→


1 4 7
0 10 8
0 5 1
0 0 −13

 y2←y2−2y3→


1 4 7
0 0 6
0 5 1
0 0 −13

 y4←y4+2y2→


1 4 7
0 0 6
0 5 1
0 0 −1


y2←y2+6y4→


1 4 7
0 0 0
0 5 1
0 0 −1

 y4←(−1)y4→


1 4 7
0 0 0
0 5 1
0 0 1

 y3←y3−y4→


1 4 7
0 0 0
0 5 0
0 0 1


y1←y1−7y4→


1 4 0
0 0 0
0 5 0
0 0 1

 x2←x2−4x1→


1 0 0
0 0 0
0 5 0
0 0 1

 permute rows→


1 0 0
0 5 0
0 0 1
0 0 0
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x2↔x3→


1 0 0
0 0 5
0 1 0
0 0 0

 y2↔y3→


1 0 0
0 1 0
0 0 5
0 0 0

 .

Now our matrix is in SNF.

You can check your work using Sage (Sage Cell Server online (https://sagecell.sagemath.org/).
by entering the original matrix M , row by row, and running the following code (using matrix from
previous example):

1 M = matrix([[1,4,7],[-1,6,1],[0,5,1],[2,3,0]])

2 M.elementary_divisors()

It will return the diagonal entries of the matrix in SNF. You can use this to check your work. If
you do not show your work on your homework, you will not get points! YOU
NEED TO SHOW YOUR STEPS ON HOMEWORK!! Just a friendly reminder.

7.2 Representation of finitely generated abelian groups

Before the next example, let’s review a very important theorem from abstract algebra (exact state-
ment taken from [3]).

Theorem 7.1. (Fundamental Theorem of Finitely Generated Abelian Groups)
Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups in
the form

Z(p1)r1 × Z(p2)r2 × · · · × Z(pn)rn × Z× Z× · · · × Z,

where the pi are primes, not necessarily distinct, and the ri are positive integers.

We will use this theorem in the following example. Don’t be intimidated by it–you will only be
asked to use it in applications in this class. The next example should make it clear how you will
be expected to do that.

Example 15.
Question: Suppose that G is an abelian group generated by elements g1, g2, and g3. Suppose
also that G is subject to the following relations:

r1 = 99g1 + 11g2−22g3
r2 = 22g1 + 88g2 + 44g3.

We are told that this set of relations is complete. Use these relations to express G as the
direct product of cyclic groups.

Solution: This may seem complicated, but it’s actually very simple. All we need to
do is construct a coefficient matrix from the given relations and then put that coefficient
matrix into SNF. Once we have the SNF matrix, we can pull the diagonal entries to
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construct the direct product of cyclic groups.
First, let’s construct a coefficient matrix from the relations and put that matrix in SNF
(rows are denoted by y1, y2 and columns by x1, x2, x3):(

99 11 -2-2
22 88 44

)
y2←y2+2y1→

(
9 1 −2
20 10 0

)
x2←(−1)x2→

(
9 −1 −2
20 −10 0

)
x1←x1+2x2→

(
7 −1 −2
0 −10 0

)
y2←(−1)y2→

(
7 −1 −2
0 10 0

)
x1←x1+3x3→

(
1 −1 −2
0 10 0

)
x2←x2+x1→

(
1 0 −2
0 10 0

)
x3←x3+2x1→

(
11 0 0
0 1010 0

)
.

Now our matrix is in SNF. Thus G can be expressed as the following direct product of cyclic
groups:

G ≃ Z1 × Z10 × Z.

Notice that we have an extra trailing Z in our direct product. You can think about it like this:
the group has three generators, so we need three algebraic objects in the direct product so
that all of the group dimensions are accounted for. Notice also that 10 is not prime. That
is okay here. You don’t need to complicate your life by rewriting and expanding things.
However, if we wanted to, we could further decompose Z10 into Z2×Z5, and we would have
a representation consistent with Theorem 7.1.

Remark 2. In general, for a given group G with n generators and α1, . . . , αm on the diagonal
entries of the corresponding SNF matrix (obtained from a coefficient matrix of a complete set of
relations), G can be expressed as a direct product of n algebraic objects like so:

G ≃ Zα1 × · · · × Zαm × Z× · · · × Z︸ ︷︷ ︸
n

In the example above, α1 = 1 and α2 = 10, so m = 2. Since n = 3, we add n −m = 3 − 2 = 1
additional trailing Z.
If you have more relations than generators, you will still have n elements in the direct product–you
just won’t have any trailing Z’s.
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8 Lecture 8: Rings. Polynomials. Fields.

8.1 Polynomial long division

Polynomial long divison works in a very similar manner to integer long division. It may look scary,
but it’s really the same idea. The important thing to remember here is that we are performing
operations in fields, usually finite fields of the form Zp in this course. What this means in practice
is that the coefficients in front of the variables come from a set finite field, so you will occasionally
need to multiply the divisor by an element from the given field to get what you want. This is
probably clearer through example.

Example 16. (From the slides)
Question: In Z7[x]Z7[x], find the remainder of division of f(x) and g(x), where

f(x) = x6 + 3x5 + 4x2 − x+ 2

g(x) = x2 + 2x− 3.

Solution:

x4 +x3 +x2 +x+ 5

x2 + 2x− 3 x6 +3x5 +4x2 −x +2

−(x6 +2x5 −3x4) ↓ (mult. by x4)

x5 +3x4 +4x24x2

−(x5 +2x4 −3x3) ↓ (mult. by x3)

x4 +3x3 +4x2 −x−x
−(x4 +2x3 −3x2) ↓ (mult. by x2)

x3 +7x2 −x +2+2

x3 +6x +2 (mod 7)

−(x3 +2x2 −3x) (mult. by x)

−2x2 +9x +2

5x2 +2x +2 (mod 7)

−(5x2 +10x −15) (mult. by 5)

−8x +17

6x6x +3+3 (mod 7)

So we have:
f(x) =

(
x4 + x3 + x2 + x+ 5

)
g(x) + 6x+ 36x+ 3,

which means that

q(x) = x4 + x3 + x2 + x+ 5

r(x) = 6x+ 3.

Thus the remainder of division is 6x+ 3.6x+ 3.
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We can check that our answer is correct by entering the following into WolframAlpha:

PolynomialMod[(x^4+x^3+x^2+x+5)*(x^2+2x-3)+(6x+3), 7]

And we can confirm that this indeed returns f(x). In general, for division of f(x) by g(x) with
coefficients in Zp that yields f(x) = q(x)g(x) + r(x), you can check your work by confirming that
f(x) = PolynomialMod[q(x)*g(x)+r(x), p] holds.

8.2 Polynomial gcd

Example 17. (From the slides)
Question: In Z3[x]Z3[x], use the Euclidean lemma to find gcd(f(x), g(x)), where

f(x) = x5 + 2x3 + x+ 1

g(x) = x4 + x+ 2.

Solution: First, since the degree of f , 5, is greater than the degree of g, 4, we will divide f
by g. Remember that we are doing calculations in Z3!

x

x4 + x+ 2 x5 +2x3 +x +1

−(x5 +x2 +2x) ↓ (mult. by x)

2x3 −x2 −x +1+1

2x32x3 +2x2+2x2 +2x+2x +1+1 (mod 3)

We now have f(x) = xg(x) + 2x3 + 2x2 + 2x+ 12x3 + 2x2 + 2x+ 1. We we will divide g(x) by the remainder
2x3 + 2x2 + 2x+ 1:

2x +1

2x3 + 2x2 + 2x+ 1 x4 +x +2

−(x4 +x3 +x2 +2x) ↓ (mult. by 2x)

−x3 −x2 −x +2+2

2x3 +2x2 +2x +2 (mod 3)

−(2x3 +2x2 +2x +1) (mult. by 1)

11

This leaves us with g(x) = (2x+ 1)(2x3 + 2x2 + 2x+ 1) + 11. Now we can use the Euclidean
lemma for polynomials to find gcd(f(x), g(x)):

f(x) = xg(x) + 2x3 + 2x2 + 2x+ 12x3 + 2x2 + 2x+ 1 ⇒ gcd(f(x), g(x)) = gcd(2x3 + 2x2 + 2x+ 12x3 + 2x2 + 2x+ 1, g(x))

g(x) = (2x+ 1)(2x3 + 2x2 + 2x+ 1) + 11 ⇒ = gcd(11, 2x3 + 2x2 + 2x+ 1) = 1.

Thus gcd(f(x), g(x)) = 1.gcd(f(x), g(x)) = 1.
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9 Lecture 9: Classification of finite fields.

As in Lecture 4, a lot of material in this lecture may seem exceedingly abstract. It’s okay if you
don’t understand 100% of the theory. You will be asked to do some basic computational exercises
with finite fields and polynomial rings. As long as you are reasonably comfortable doing such
computations, you don’t have too much to worry about.

As indicated in the slides, this lecture has many parallels to the very first lecture in the course.
The concepts are almost identical. In the first lecture, we looked at operations with integers. In
this lecture, we are looking at analogs of those same operations with certain types of polynomials
in special structures.

Example 18.
Question: Let f(x) = x4 + x+ 1 ∈ Z2[x]Z2[x].

(a) Prove that E = Z2[x]/⟨f(x)⟩ is a field by showing that f(x) is irreducible.

(b) Find χ(E), |E|, and |E∗|.

(c) Find (x+ 1)−1 in E.

Solution:

(a) We need to show that f(x) is irreducible. Notice that f(x) is of degree 4. So to show
irreducibility, we need to check both linear (degree 1) and irreducible quadratic (degree
2) factors. We do not need to worry about checking degree 3 factors, since any degree 3
factor would need to be multiplied by a degree 1 factor to yield a degree 4 polynomial.

Recall that, in Z2[x], these are the irreducible linear and quadratic polynomials (from
Lecture 8):

−→−→ x, x+ 1, x2 + x+ 1.x, x+ 1, x2 + x+ 1. ←−←−
To check whether x is a factor, we can simply plug in x = 0 to f(x)a:

f(0) = 04 + 0 + 1 = 1 ̸= 0.

Thus x is not a factor. Now we check whether x+ 1 is a factor:

f(1) = 14 + 1 + 1 = 3 ≡2 1 ̸= 0.

So x+ 1 is not a factor either. Now we need to check whether x2 + x+ 1 is a factor of
f(x). To do so, we can try dividing out x2 + x+ 1 from f(x) and see whether we get
a remainder.

x2 +x

x2 + x+ 1 x4 +x +1

−(x4 +x3 +x2) ↓ (mult. by x2)

−x3 −x2 +x+x

x3 +x2 +x (mod 2)

−(x3 +x2 +x) ↓ (mult. by x)

+1+1

Thus 11 is the remainder of division, so x2 + x+ 1 is indeed not a factor of f(x).
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(b) Remember that the characteristic χ(E) is the number of times that the multiplicative
identity of a field needs to be added together to get the additive identity. The multi-
plicative identity in this case is 1, and the additive identity is 0. Since 1+ 1 = 0 in Z2,
χ(E) = 2.χ(E) = 2.

The degree of f is 4, thus the size of E, |E|, is 24 = 16.16. It follows that the size of the
multiplicative group of E, |E∗|, is 16− 1 = 15.15.

(c) Finally, we need to find the inverse of the element (x + 1) in E. We could make a
multiplication table (which is a huge hassle), OR we could think like this: the inverse
of any element g(x) of degree 1 in E is going to be some element of the form ax3 +
bx2 + cx+ d such that (ax3 + bx2 + cx+ d) · g(x) ≡f(x) 1. We know that this element
will be of degree 3 since our modulus is of degree 4, and we want the product of the
elements (which will be of degree 4) to be equivalent to 1 modf(x)).

So! Let’s set up a system of congruences based on the following:

(x+ 1)(ax3 + bx2 + cx+ d) ≡f(x) 1

ax4 + bx3 + cx2 + dx+ ax3 + bx2 + cx+ d ≡f(x) 1

ax4 + (a+ b)x3 + (b+ c)x2 + (c+ d)x+ d ≡f(x) 1.

Notice that we now have a polynomial of degree 4. Recall that our modulus is x4+x+1.
By definition, then, we have

x4 + x+ 1 ≡f(x) 0

⇒⇒ x4 ≡f(x) −x− 1

⇒⇒ x4 ≡f(x) x+ 1x+ 1 (mod 2)

We can use this to simplify our congruences.

ax4 + (a+ b)x3 + (b+ c)x2 + (c+ d)x+ d ≡f(x) 1

a(x+ 1x+ 1) + (a+ b)x3 + (b+ c)x2 + (c+ d)x+ d = 1

ax+ a+ (a+ b)x3 + (b+ c)x2 + (c+ d)x+ d = 1

(a+ b)(a+ b)x3 + (b+ c)(b+ c)x2 + (a+ c+ d)(a+ c+ d)x+ (a+ d)(a+ d) = 1.

Now we need to find a, b, c, and d, so we need to solve a system of congruences.

a+ ba+ b ≡2 0

b+ cb+ c ≡2 0

a+ c+ da+ c+ d ≡2 0

a+ da+ d ≡2 1.

First, we solve for d:

a+ ba+ b ≡2 0 ⇒⇒ a ≡2 b,

b+ cb+ c ≡2 0 ⇒⇒ b ≡2 c ⇒⇒ a ≡2 b ≡2 c,
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so
a+ c+ da+ c+ d ≡2 0 ⇒⇒ 2a+ d ≡2 0 ⇒⇒ d ≡2 0.

Substituting back, we get a = 1, b = 1, c = 1, and d = 0, so (x+ 1)−1 = x3 + x2 + x(x+ 1)−1 = x3 + x2 + x
in E.

aThink about it like this: If f(0) = 0, then x = 0 is a factor, which means that x is a factor. If f(1) = 0,
then x = 1 is a factor, which means that x − 1 = 0 is a factor, which means that (taking mod 2) x + 1 is a
factor.
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10 Lecture 10: Vector spaces. Applications.

10.1 Blakley’s (t, n)-threshold scheme

As discussed in class, secret sharing is a very useful tool that, as the name suggests, allows multiple
parties to share a secret in such a way that a certain number of participants are required to
reconstruct the secret. Here is a nice explanation of the idea from [5].

Suppose you and your friend accidentally discovered a map that you believe would lead you to
an island full of treasure. You and your friend are very excited and would like to go home and
get ready for the exciting journey to the great fortune. Now who is going to keep the map?
Suppose you and your so-called friend do not really trust each other and are afraid that, if the
other one has the map he/she might just go alone and take everything. Now we need a scheme
that could make sure that the map is shared in a way so that no one would be left out in this
trip. What would you suggest?
An easy way to solve this problem is to split the map into two pieces and make sure that both
pieces are needed in order to find the island. Now we give one piece to each. You can happily
go home and be assured that your friend has to go with you in order to find the island. This
illustrates the basic concept of secret sharing.

The concept is not so difficult in practice either.

In Blakley’s (t, n)-threshold scheme, the dealer generates n random vectors with entries from a
preset field F . Then, for each random vector, she computes a linear combination of the (preselected)
secret with each vector and sends one resulting equation to each player. The whole idea is that any
t players can reconstruct the secret. The secret is an element (β1, . . . , βt) ∈ F t (i.e. a t-dimensional
vector with entries in F ). As always, let’s look at an example.

Example 19.
Question: Consider an instance of the Blakley (2, 3)-threshold scheme in which the dealer
uses the field Z13Z13 and distributes the following shares:

(#1)(#1) 3x1 + 5x2 = 9

(# 2)(# 2) 10x1 − x2 = 0

(# 3)(# 3) 5x1 + 7x2 = 12.

What is the secret?

Solution: Since this is a (2, 3)-threshold scheme, there are 3 participants and 2 shares are
required to reconstruct the secret.
All we need to do is solve the system

3x1 + 5x2 ≡13 9

10x1 − x2 ≡13 0

5x1 + 7x2 ≡13 12.

First, let’s solve for x1 and x2. Looking at the second congruence, we can immediately see
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that
10x1 − x2 ≡13 0 ⇒ x2 ≡13 10x1.

Now, substituting back x2 ≡13 10x1 into the first and last congruences, we get the system{
3x1 + 5(10x1) ≡13 9

5x1 + 7(10x1) ≡13 12
⇒

{
53x1 ≡13 9

75x1 ≡13 12

mod 13⇒

{
x1 ≡13 9

10x1 ≡13 12.

We can immediately see that x1 = 9 is a solution to both congruences. Thus x2 = 10 · 9 =
90 ≡13 12. Thus the secret is (x1, x2) = (9, 12).(x1, x2) = (9, 12).

10.2 Shamir’s (t, n)-threshold scheme

The idea behind Shamir’s (t, n)-threshold scheme is very similar to Blakley’s threshold scheme–a
trusted dealer generates t − 1 random elements from a fixed field F , computes some polynomial
with those random elements as coeffiients, and then generates and distributes some n values to the
participants using that polynomial. At least t shares are required to reconstruct the secret. The
secret is reconstructed using a Lagrange polynomial. Let’s take a look.

Example 20.
Question: Consider an instance of Shamir’s (3, 3)-threshold scheme over Z5Z5 in which the
dealer distributes the following shares:

(#1)(#1) (3, f(3)) = (3, 2),

(#2)(#2) (1, f(1)) = (1, 1),

(#3)(#3) (4, f(4)) = (4, 1).

What is the secret?

Solution: Here, we have a (3, 3)-threshold scheme, which means that there are 3 par-
ticipants and all 3 shares are required to reconstruct the secret. So we first need to compute
three Lagrange polynomials (one from each share), and then use values obtained from those
polynomials to reconstruct the secret.
The first Lagrange polynomial, l1(x), can be constructed according the interpolation formula
from the slides:

l1(x) =

(
x− x2
x1 − x2

)(
x− x3
x1 − x3

)
=

(x− 1)(x− 4)

(3− 1)(3− 4)

=
x2 − 5x+ 4

(−2)
mod 5
=

x2 + 4

3

3−1=2
= 2x2 + 8

mod 5
= 2x2 + 3.2x2 + 3.

The second Lagrange polynomial can be constructed as above.

l2(x) =

(
x− x1
x2 − x1

)(
x− x3
x2 − x3

)
=

(x− 3)(x− 4)

(1− 3)(1− 4)

=
x2 − 7x+ 12

6

mod 5
=

x2 + 3x+ 2

1
= x2 + 3x+ 2.x2 + 3x+ 2.
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And, finally, the third polynomial:

l3(x) =

(
x− x1
x3 − x1

)(
x− x2
x3 − x2

)
=

(x− 3)(x− 1)

(4− 3)(4− 1)

=
x2 − 4x+ 3

3

mod 5
=

x2 + x+ 3

3

3−1=2
= 2x2 + 2x+ 6

mod 5
= 2x2 + 2x+ 1.2x2 + 2x+ 1.

Now, from the problem statement, we know that f(3) = 2, f(1) = 1, and f(4) = 1. We can
combine all of this together to get one mega polynomial L(x).

L(x) = 2
(
2x2 + 32x2 + 3

)
+ 1

(
x2 + 3x+ 2x2 + 3x+ 2

)
+ 1

(
2x2 + 2x+ 12x2 + 2x+ 1

)
= 4x2 + 6 + x2 + 3x+ 2 + 2x2 + 2x+ 1

= 7x2 + 5x+ 9

mod 5
= 2x2 + 4.

So L(x) = 2x2 + 4. Finally, the secret is simply L(0) = 2(0)2 + 4 = 4.4.
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11 Lecture 11: Elliptic curves.

The last two lectures in this course focus on elliptic curves and their applications to cryptography.
Elliptic curves are simply sets of points satisfying a certain type of equation, with addition of points
defined as shown on the slides. Let’s review the definition.

Definition 11.1. An elliptic curve E is the set of solutions (with a special element O) on
an equation of the form

y2 = x3 + ax+ by2 = x3 + ax+ b, (1)

called a Weierstrass equation.

Addition of points on E is defined on the slides. The point O is the identity element, and is
sometimes also referred to as the point at infinity.

To visualize an elliptic curve E , you can use the following Mathematica code (using y2 = x3−3x+5
as an example):

In[1]:= f[x_, a_, b_] := x^3 + a*x + b;

ContourPlot[y^2 == f[x, -3, 5], {x, -5, 5}, {y, -5, 5},

Axes -> True, Frame -> False]

Out[1]=
-4 -2 2 4

-4

-2

2

4

One of the fundamental ideas in this lecture is the idea of an elliptic curve over a finite field.
Such curves are simply sets of points (x, y) satisfying some Weierstrass equation (1) such that each
element x and y is in some predetermined finite field Zp. One thing to remember here is that, when
we perform addition over such a curve, arithmetic operations must be done with respect to Zp.

Example 21.
Question: Find all points on the elliptic curve E defined by the equation

y2 = x3 + 2x+ 2y2 = x3 + 2x+ 2
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over Z5Z5. This table may help you:

Congruence Solution

y2 ≡5 0 y = 0

y2 ≡5 1 y = 1, 4

y2 ≡5 2 none

y2 ≡5 3 none

y2 ≡5 4 y = 2, 3.

Solution: We are given a Weierstrass equation with values a = 2 and b = 2 over the
field Z5. All we need to do to find points on the curve is plug in values from Z5 for x and
see whether there are solutions to the resulting quadratic congruence.
→→ First, O is on E . We get that for free (since O is the identity).
→→ Next, let’s plug in x = 0.

y2 = (0)3 + 2(0) + 2

y2 = 2.

Are there solutions to y2 = 2 in Z5? Looking at the table above, we can see that there are
no solutions to y2 ≡5 2, so x = 0 does not produce any points on E .
→→ Now, x = 1:

y2 = (1)3 + 2(1) + 2

y2 = 5 ≡5 0.

From the table, we can see that y = 0 is a solution to y2 ≡5 0, so the point (1, 0)(1, 0) is on E .
→→ x = 2:

y2 = (2)3 + 2(2) + 2

y2 = 14 ≡5 4.

From the table, y = 2, 3 are solutions to y2 ≡5 4, so the points (2, 2)(2, 2) and (2, 3)(2, 3) are on E .
→→ x = 3:

y2 = (3)3 + 2(3) + 2

y2 = 35 ≡5 0.

From the table, y = 0 is a solution to y2 ≡5 0, so the point (3, 0)(3, 0) is on E .
→→ Finally, x = 4:

y2 = (4)3 + 2(4) + 2

y2 = 74 ≡5 4.

Once again from the table, y = 2, 3 are solutions to y2 ≡5 4, so the points (4, 2)(4, 2) and (4, 3)(4, 3)
are on E .
So the set of all points on E is {O, (1, 0), (2, 2), (2, 3), (3, 0), (4, 2), (4, 3)}.{O, (1, 0), (2, 2), (2, 3), (3, 0), (4, 2), (4, 3)}.
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Below is the curve from the previous example. Notice two things: first, this is the whole curve.
The curve is a finite set of points in Z2

5. Second, the curve has some geometric symmetry. It is
worthwhile to consider where this symmetry comes from.

Figure 1: y2 = x3 + 2x+ 2 over Z5 [2]

Let’s now look at one more example involving adding points on an elliptic curve over a finite field.

Example 22.
Question: Consider the elliptic curve E defined by the equation

y2 = x3 + 2x+ 5y2 = x3 + 2x+ 5

over Z13Z13. Calculate the following:

(a) (2, 2)⊕ (3, 8),

(b) (4, 5)⊕ (4, 8).

Solution: We are given a Weierstrass equation with a = 2 and b = 5 over the field Z13.

(a) First, we want to find (2, 2) ⊕ (3, 8). We have x1 = 2, x2 = 3, y1 = 2, y2 = 8. Since
x1 ̸= x2, we use the addition formula for Case-ICase-I. First, we calculate the slope λ:

λ =
y2 − y1
x2 − x1

=
8− 2

3− 2
= 6.

Now we need to find x3 and y3 using the formula from the slides.

x3 = λ2 − x1 − x2 = 62 − 2− 3 = 36− 2− 3 = 31 ≡13 55

y3 = λ(x1 − x3)− y1 = 6(2− 55)− 2 = 6(−3)− 3 = −20 ≡13 66.

Thus (2, 2)⊕ (3, 8) = (5,6).(5,6).

(b) Now we want to find (4, 5) ⊕ (4, 8). We have x1 = 4, x2 = 4, y1 = 5, y2 = 6. Since
x1 = x2 and y1 ̸= y2, it is Case-IVCase-IV, and thus (4, 5)⊕ (4, 8) = O.O.
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And, just for kicks, here is the curve from the previous example.

Figure 2: y2 = x3 + 2x+ 5 over Z13 [2]
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12 Lecture 12: ECDLP. ECC.

The discrete log problem for elliptic curves is almost identical to the discrete log problem for general
groups that was discussed earlier in the course. The only difference here is that the computations
are done on elements in elliptic curve groups, and thus the multiplication operation is performed
using the point multiplication formulas from Lecture 11. Let’s review the statement of the DLP.

Definition 12.1. The discrete logarithm problem (DLP) for an elliptic curve E is the fol-
lowing algorithmic problem: given h, g ∈ E , find n ∈ N satisfying h = n · g.

12.1 Elliptic curve computational Diffie-Hellman

First, let’s recall the statement of the Elliptic curve computational Diffie-Hellman (ECCDH) key
exchange problem for elliptic curves.

Definition 12.2. (ECCDH for an elliptic curve E)
Given (g, a · g, b · g), compute (ab) · g.

In this course, you will be given an instance of ECCDH in the form (g, a · g, b · g), and you will be
asked to solve that instance. To solve such an instance, you need to compute the shared key (ab) ·g
as the protocol states.

Example 23.
Question: Consider the elliptic curve E defined by the equation

y2 = x3 + 2x+ 5y2 = x3 + 2x+ 5

over Z13Z13. Solve an instance ((2, 2), (3, 5), (6, 5)) of an ECCDH. The addition table below
will help you with this.

OO (2, 2)(2, 2) (2, 11)(2, 11) (3, 5)(3, 5) (3, 8)(3, 8) (4, 5)(4, 5) (4, 8)(4, 8) (5, 6)(5, 6) (5, 7)(5, 7) (6, 5)(6, 5) (6, 8)(6, 8) (8, 0)(8, 0)

OO O (2, 2) (2, 11) (3, 5) (3, 8) (4, 5) (4, 8) (5, 6) (5, 7) (6, 5) (6, 8) (8, 0)

(2, 2)(2, 2) (2, 2) (5, 7) O (4, 5) (5, 6) (6, 5) (3, 8) (2, 11) (3, 5) (8, 0) (4, 8) (6, 8)

(2, 11)(2, 11) (2, 11) O (5, 6) (5, 7) (4, 8) (3, 5) (6, 8) (3, 8) (2, 2) (4, 5) (8, 0) (6, 5)

(3, 5)(3, 5) (3, 5) (4, 5) (5, 7) (8, 0) O (6, 8) (2, 11) (2, 2) (6, 5) (4, 8) (5, 6) (3, 8)

(3, 8)(3, 8) (3, 8) (5, 6) (4, 8) O (8, 0) (2, 2) (6, 5) (6, 8) (2, 11) (5, 7) (4, 5) (3, 5)

(4, 5)(4, 5) (4, 5) (6, 5) (3, 5) (6, 8) (2, 2) (4, 8) O (5, 7) (8, 0) (3, 8) (2, 11) (5, 6)

(4, 8)(4, 8) (4, 8) (3, 8) (6, 8) (2, 11) (6, 5) O (4, 5) (8, 0) (5, 6) (2, 2) (3, 5) (5, 7)

(5, 6)(5, 6) (5, 6) (2, 11) (3, 8) (2, 2) (6, 8) (5, 7) (8, 0) (4, 8) O (3, 5) (6, 5) (4, 5)

(5, 7)(5, 7) (5, 7) (3, 5) (2, 2) (6, 5) (2, 11) (8, 0) (5, 6) O (4, 5) (6, 8) (3, 8) (4, 8)

(6, 5)(6, 5) (6, 5) (8, 0) (4, 5) (4, 8) (5, 7) (3, 8) (2, 2) (3, 5) (6, 8) (5, 6) O (2, 11)

(6, 8)(6, 8) (6, 8) (4, 8) (8, 0) (5, 6) (4, 5) (2, 11) (3, 5) (6, 5) (3, 8) O (5, 7) (2, 2)

(8, 0)(8, 0) (8, 0) (6, 8) (6, 5) (3, 8) (3, 5) (5, 6) (5, 7) (4, 5) (4, 8) (2, 11) (2, 2) O
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Solution: Here is the information with which we are provided:

g = (2, 2)

a · g = (3, 5)

b · g = (6, 5),

and our curve is defined by a Weierstrass equation with a = 2 and b = 5 over the field Z13.
All we need to do here is calculate (ab) · g. In order to do so, however, we first need to
find a and b from the information provided.
→→ First, let’s find a. We have a · g = (3, 5), and since g = (2, 2), we need to solve

a · (2, 2) = (3, 5).

Now we can use the table provided to determine a–we simply need to figure out how many
times (2, 2) is multiplied by itself in order to produce (3, 5):

O · (2, 2) = (2, 2)(2, 2)

(2, 2)(2, 2) · (2, 2) = (5, 7)(5, 7)

(2, 2) · (2, 2) · (2, 2) = (5, 7)(5, 7) · (2, 2) = (3, 5).

Since 3 · (2, 2) = (3, 5), we have a = 3.
→→ Now we need to find b. From the problem statement, we know that b · g = (6, 5), and
g = (2, 2), so we need to solve

b · (2, 2) = (6, 5).

We can use the exact same procedure as above:

O · (2, 2) = (2, 2)(2, 2)

(2, 2)(2, 2) · (2, 2) = (5, 7)(5, 7)

(2, 2) · (2, 2) · (2, 2) = (5, 7)(5, 7) · (2, 2) = (3, 5)(3, 5)

(2, 2) · (2, 2) · (2, 2) · (2, 2) = (3, 5)(3, 5) · (2, 2) = (4, 5)(4, 5)

(2, 2) · (2, 2) · (2, 2) · (2, 2) · (2, 2) = (4, 5)(4, 5) · (2, 2) = (6, 5).

Since 5 · (2, 2) = (6, 5), b = 5.
→→ Now all we need to do is calculate (ab) · g.

(ab) · g = (3 · 5) · (2, 2) = 3 · (5 · (2, 2)) = 3 · (6, 5) = (3, 5).

So the shared key is (3, 5).(3, 5).

38



MA503 TA Notes
Weiers F23

12.2 Elliptic curve ElGamal PKC

Example 24.
Question: Consider the elliptic curve E defined by the equation

y2 = x3 + x+ 5y2 = x3 + x+ 5

over Z13Z13. Let g = (3, 10) and A = (7, 11) be Alice’s public key for EC-ElGamal encryption.
Bob sends Alice ciphertext (c1, c2), where c1 = (12, 9) and c2 = (7, 2). Find Bob’s message.
The addition table below will help you.

OO (3, 3)(3, 3) (3, 10)(3, 10) (7, 2)(7, 2) (7, 11)(7, 11) (10, 1)(10, 1) (10, 12)(10, 12) (12, 4)(12, 4) (12, 9)(12, 9)

OO O (3, 3) (3, 10) (7, 2) (7, 11) (10, 1) (10, 12) (12, 4) (12, 9)

(3, 3)(3, 3) (3, 3) (10, 12) O (12, 9) (7, 2) (3, 10) (12, 4) (7, 11) (10, 1)

(3, 10)(3, 10) (3, 10) O (10, 1) (7, 11) (12, 4) (12, 9) (3, 3) (10, 12) (7, 2)

(7, 2)(7, 2) (7, 2) (12, 9) (7, 11) (3, 3) O (12, 4) (10, 1) (3, 10) (10, 12)

(7, 11)(7, 11) (7, 11) (7, 2) (12, 4) O (3, 10) (10, 12) (12, 9) (10, 1) (3, 3)

(10, 1)(10, 1) (10, 1) (3, 10) (12, 9) (12, 4) (10, 12) (7, 2) O (3, 3) (7, 11)

(10, 12)(10, 12) (10, 12) (12, 4) (3, 3) (10, 1) (12, 9) O (7, 11) (7, 2) (3, 10)

(12, 4)(12, 4) (12, 4) (7, 11) (10, 12) (3, 10) (10, 1) (3, 3) (7, 2) (12, 9) O
(12, 9)(12, 9) (12, 9) (10, 1) (7, 2) (10, 12) (3, 3) (7, 11) (3, 10) O (12, 4)

Solution: To find Bob’s message, we need to compute m, which we can do by solv-
ing m = c2 − a · c1 as specified by the protocol from the slides. First, then, we need to find
a by solving

a = logg(A) = log(3,10)(7, 11).

The easiest way to find a is by simply enumerating multiples of (3, 10) using the given
multiplication table until we see (7, 11).

O · (3, 10) = (3, 10)(3, 10)

(3, 10)(3, 10) · (3, 10) = (10, 1)(10, 1)

(3, 10) · (3, 10) · (3, 10) = (10, 1)(10, 1) · (3, 10) = (12, 9)(12, 9)

(3, 10) · (3, 10) · (3, 10) · (3, 10) = (12, 9)(12, 9) · (3, 10) = (7, 2)(7, 2)

(3, 10) · (3, 10) · (3, 10) · (3, 10) · (3, 10) = (7, 2)(7, 2) · (3, 10) = (7, 11).

Since 5 · (3, 10) = (7, 11), a = 55. The final step is now to compute m = c2 − a · c1:

m = c2 − a · c1
= (7, 2)− 55 · (12, 9)
= (7, 2)− (12, 4) (using table)

= (7, 2) + (12, 9) ((12, 4)−1 = (12, 9))

= (10, 12). (using table)

Thus m = (10, 12).m = (10, 12).
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A Notation

SymbolSymbol TranslationTranslation ExampleExample

∈∈ “in”
This symbol indicates membership.
1 ∈ Z, 1 + i ∈ C, 4 ∈ Z5, a ∈ {a, b, c}

̸∉∈ “not in”
This symbol indicates lack of membership.
−2 ̸∈ N, 1/2 ̸∈ Z, a ̸∈ {1, 2, 3}

∀∀ “for all”
C = i+ 1 ∀ i = 1, 2, . . . , n
→ For each i from 1 to n, C = i+ 1.

∃∃ “there exists”
∀ x ∈ Z, ∃ y ∈ Z such that x+ y = 0.
→ For every integer x, there exists another integer y
such that x+ y = 0.

∄∄ “there does not exist”
∄ even prime p such that p > 2
→ There does not exist an even prime number larger
than 2.

⇒⇒ “implies”
x is prime ⇒ x ̸= 4
→ If x is prime, then x cannot be equal to 4.

⇐⇐ “implied by”

Exactly one of {x, y} is odd ⇐ the product xy is odd
→ If the product of two numbers x and y is an
odd number, then exactly one of x and y is an odd
number.

⇔⇔ “if and only if”

(combination of “⇒” and “⇐”)
x is divisible by 2 ⇔ x is even.
→ If x is divisible by 2, then x is even, and if x is even,
then x is divisible by 2.

≡n≡n “congruent to mod n” 5 ≡4 1, 7 ≡13 7, 12 ≡5 2

≃≃ “isomorphic to”
An isomorphism is a one-to-one structure-preserving
mapping between two sets
Z6 ≃ Z2 × Z3, Z ≃ Z

φφ mapping
Usually indicates a mapping from one set to another
(pronounced “phi”)

→→ general mapping
Indicates a general, nonspecific mapping from one set
to another

7→7→ specific mapping
Indicates a particular mapping from elements in the
domain to their images in the range

×× Cartesian product
For two sets A and B, A×B is the set of all elements
(a, b) where a ∈ A and b ∈ B
Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}
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gcdgcd greatest common divisor
Largest positive integer that divides arguments
gcd(8, 12) = 4, gcd(2, 13) = 1

lcmlcm least common multiple
Smallest positive integer that is a multiple of arguments
lcm(3, 6) = 3, lcm(12, 20) = 60

ZZ set of all integers . . . ,−2,−1, 0, 1, 2, . . .

Z+Z+ set of all positive integers 1, 2, 3, 4, 5, . . .

NN set of all natural numbers 1, 2, 3, 4, 5, . . .

QQ set of all rational numbers
A rational number is any number of the form m/n,
where m and n are integers.
0, 1/2,−2, . . .

Q+Q+ set of all positive
rational numbers

1/2, 10, 35/145, . . .

RR set of all real numbers −6/10, e, 105, . . .

R+R+ set of all positive
real numbers

0.11, e2, 154, . . .

CC set of all complex numbers
Any number of the form a+ bi, where a, b ∈ R
1 + i, −e+ 2.4i, . . .

ZnZn set of integers mod n
Zn = {0, 1, . . . , n− 1}
Z2 = {0, 1}, Z5 = {0, 1, 2, 3, 4}

UnUn set of units mod n
Set of invertible elements in Zn

U14 = {1, 3, 5, 9, 11, 13}

B LATEX for beginners

LATEX is the preferred method for typesetting any sort of math document (this document was
typeset in LATEX, e.g.). It is an extremely valuable skill to have! Typing up your homework in
LATEX is a great way to practice, and, as a bonus, it makes your work much easier to read (for you
and for me). You don’t even need to install anything locally on your computer–just use Overleaf
(https://www.overleaf.com/) to simplify your life. It has a nice editor and syntax checker, plus
a built-in dark mode.

−→−→ Here is a basic guide to get you started typesetting in LATEX: https://www.cs.

princeton.edu/courses/archive/spr10/cos433/Latex/latex-guide.pdf

−→−→ And here are some great templates for typing your homework: https://www.overleaf.
com/gallery/tagged/homework

If you need help with anything LATEX, just shoot me an email. I am happy to help you learn!
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